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On the connection between solutions of Dirac and Maxwell 
equations, dual Poincarb invariance and superalgebras of 
invariance and solutions of nonlinear Dirac equations 

W I Fushchich, W M Shtelen and S V Spichak 
Institute of Mathematics, Repin Street 3, Kiev 4, USSR 
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Abstract. The connection between solutions of massless Dirac and Maxwell equations is 
established. It is shown that the massless Dirac equation is invariant under three different 
representations of the Poinsare algebra corresponding to spins i and 1 and 0, and under 
three superalgebras. All generators of these symmetry algebras and superalgebras are local 
(differential operators of first order). A system o f  two D i m  equations with masses m and 
- m  has analogous symmetry properties. Invariant nonlinear generalizations of this system 
are described. We construct the complete set of P( I. 3)-inequivalent ansitze ofcodimension 
I for all representations of PoincarC algebra discussed. These ansitre are used far reduction 
and finding exact solutions of some nonlinear Dirac equations. 

1. Introduction 

It is well known that the Dirac equation describes a particle with spin-f, or a fermionic 
field, because it is invariant with respect to the representation D(f, 0)0D(O,f) of the 
Poincard algebra AP(1,3). In this paper we will show that the massless Dirac equation 
as well as the system of two coupled Dirac equations with masses m and -m are 
invariant not only with respect to the spin-f representation of AP(1,3) but also under 

only fermionic fields hut also bosonic ones. 
In section 2 we obtain formulae of connection between solutions of the massless 

Dirac equation and Maxwell equations for a vacuum, so that one can construct solutions 
of the Dirac equation knowing solutions of the Maxwell equations and vice versa. 
Further, we show that the massless Dirac equation is invariant under three different 
representations of the Poincar6 algebra AP( 1,3) and under three superalgebras. All 
generators of these symmetries are differential operators of first order and belong to 
the maximal in the sense of Lie invariance algebra of the equation. We shall call 
invariance of an equation, with respect to different representations of the Poincart 
algebra, dual Poincar6 invariance. 

In section 3 we study dual Poincard invariance of the Dirac equation with non-zero 

-m possesses this symmetry. It is worthwhile to note that the same Dirac system was 
studied by Fushchich (1970, 1973) and by Petroni el al(1985, 1986). Fushchich (1970, 
1973) had shown that the most symmetric (including discrete symmetries) spinor 
representation of the Poincart algebra is realized only on the system of two coupled 
Dirac equations and such a realization is impossible on a single Dirac equation with 
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non-zero mass. We prove that the Dirac system under study is also invariant under 
two superalgehras. Nonlinear dual Poincard invariant generalizations of the equations 
are considered. 

In section 4 we construct the complete set of the P(1,3)-inequivalent ansatze of 
codimension 1 for all representations of AP(1,3) discussed in the previous sections. 
These ansatze reduce corresponding Poincart invariant equation to a system of ordinary 
differential equations (OD&). Here we essentially used results on the subalgehraic 
classification of AP(I, 3 )  of Patera er nl (1975) and Grundland er al (1984). It will he 
noted that the P(1,3)-inequivalent ansatze of codimenions 1 and 3 for the spin-f Dirac 
field are fully described in Fushchich and Zhdanov (1989), Fushchich and Shtelen 
(1987) and Fushchich et al (1989). Using ansatze constructed, we make reductions 
and find exact solutions of some nonlinear Dirac equations. An example solution of 
a linear Dirac equation is considered. This solution is obtained by making use of the 
vector representation of AP(I, 3) oi the coupled Dirac equations. i t  has an unusual 
structure and can be obtained as the invariant solution of the non-Lie symmetry 
operator of second order. In conclusion we give operators which transform the fermionic 
ansatze into bosonic ones. 

W I Fushchich er a1 

2. The massless Dirac equation and Maxwell equations 

Consider the massless Dirac equation 

iyJ# = ir'a,# = 0 (2.1) 

There is a connection between solutions of (2.1) and the Maxwell equations for a 
vacuum (Shtelen 1989): 

div E = O  . J E  
J f  

E = - =  rot H 
(2.3) 

div H = 0 

where E = ( E , ,  El, E,) and H = ( H , ,  Hz, H , )  are vectors of electric and magnetic 
fields. To establish this connection let us decompose an arbitrary solution of (2.1) into 

. aH H - - =  -rot E 
Jr 
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real and imaginary parts using the notation of Ljolje (1988): 

Theorem 1. Let JI defined by (2.4) be an arbitrary solution of the massless Dirac 
equation (2.1). Then the functions 

E = D +V G( 7, x) dT+ V 6 (  t o ,  x) I,: 
5,: H = B + V  F(T,  X) d.r+Vp(to,  x) 

where E( f o ,  x)  and F ( t o ,  x) satisfy the Poisson equations 

to is an arbitrary constant, are solutions of the Maxwell equations (2.3). 

Proof: First of all we note that after substitution of (2.4) into (2.1) and separation into 
real and imaginary parts we get Maxwell equations with currents 

D-rot  B = -VG div D = -G 

B + r o t D = - V F  div B = -@ 
(2.7) 

where D = (D,, D,, D,), B = (B,, B2,  B,) and the dot means differentiation with respect 
to 1. So, the Dirac equation (2.1) and the system (2.7) are fully equivalent. Therefore, 
taking into account (2.7) and the well known fact that every component of the 
+-function (2.4) obeying (2.1) satisfies the wave equation O+ = O  (in particular, 
AG(.r, x) = J2G(7, x)/aT2) we find after substitution of (2.5) into (2.3) 

E -rot H = D + VG -rot B = 0 

div E =div D +  AG(7, x)  dT+A6(to,  x)  

= div D + 1," aT2 d.r + A&( l o ,  x) 

J 
' J ~ G ( ~ ,  X) 

In the last equality we have used (2.6). In the same spirit one can prove the validity 
of the theorem for the second pair of Maxwell equations (2.3). Thus, the theorem is 
proved. 0 
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The inverse statement also holds true 

7heorem 2. Let there be given a solution E, H of the Maxwell equations (2.3) and 
two solutions F and G of the scalar wave equation 

(2.8) O F  = OG = 0. 

Then the @-function (2.4) with components F, G and 

(2.9) 
1 
1 

0, =E, - d e  G(T, x) dT+ G(to, x) 

F(T,  x)  dT+ i( to, x) 

(I,: 
( 1,: E. = H .  - d. 

where n = 1,  2, 3, &(to, x) and i ( l , , ,  x) are determined from (2.6), is a solution of the 
massless Dirac equation (2.1). 

RooJ Let us use the equivalence between the Dirac equation (2.1) and the system 
(2.7). Having substituted (2.9) into (2.7) and taking into account (2.3), (2.8) and (2 .6) ,  
we get 

D -rot B+VG = E -VG+VG-rot  H = O  

div D +  G = div E + AG(T, x) dT-AG(l0, x) + G =O. 5,: 
Analogously one has to act to prove the theorem for the rest of the equations of system 
(2.7). 0 

Theorem 2 has an important corollary: choosing F = G = 0 we get from (2.9) D = E, 
B = H, and in this case formula (2.4) takes the particularly simple form 

-E,+iE, 

(2.10) * = 

So, if E and H satisfy the Maxwell equations (2.3). then @ given by (2.10) automatically 
satisfies the Dirac equation (2.1). and one can consider relation (2.10) as a representa- 
tion of the spinor field @ by an electromagnetic field E, H. It is appropriate to note 
that if E and H are transformed under Lorentz boost as an electromagnetic Maxwell 
field, then the $-function (2.10) is not transformed like a Dirac spinor (this point will 
be discussed in detail below). It will be also noted that, according to theorem 1, the 
procedure of obtaining solutions of the vacuum Maxwell equations (2.3) from those 
of the massless Dirac equation (2.1) and the associated Poisson equations (2.6) is 
unique to within a gauge transformation, whereas the inverse procedure, Maxwell + 

Dirac, involves ambiguities due to the arbitrary choice of additional scalar fields F 
and G satisfying (2.8). When we construct solutions of Maxwell equations via solutions 
of the massless Dirac equation using formulae (2 .5 ) .  then we have arbitrariness in 
determining F and G. But this arbitrariness can be considered as gauge transformations 
E + E ’ = E + V f ( x ) , H + H ’ = H + V g ( x )  (fandgarearbitraryscalarfunctionssatisfy- 
ing the Laplace equation Af= Ag = 0), which leave invariant the Maxwell equations 
(2.3). An analogous situation is when considering the inverse procedure (formulae 
(2.9), Dirac equation in the form (2.7)). 
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Consider an  example. Let us take solutions of the Maxwell equations (2.3) and 
wave equations (2.8) in the form 

E = a x x  H = -2at F = G = 3 t 2 + x 2  (a =constant). 

Then, by means of (2.9) and (2.4) one easily finds the following solution of the Dirac 
equation (2.1): 

-[(a XX),  -2tx,]+i[(a xx),-2ix2] 
[( a x x), - 2tx3] -i( 3 t 2 + x 2 )  

2 t ( a 2 + x 2 ) + 2 i t ( a , + x , )  
-(3 t 2 +  x2) -zit( aj +x,) 

In terms of 0, B, F, G from (2.4) 

&) D 2 -  B2+ F2- G2 

and in the case of solution J, considered above we have 

$* = a 2 X 2 - ( a . X ) 2 - 4 1 2 ( a ' + Z a . ~ )  

Let us make up a four-component @-function as 

(2.11) 

(2.12) 

where Q ~ ,  , . . , Q~ are arbitrary solutions of the wave equation, that is 0'. =O. Since 
(iyJ)'= U, then the $-function (2.12) automatically satisfies the Dirac equation (2.1) 
for any set of qe, UQ+=O. So, (2.12) and (2.4), (2.5) give the following chain 
of solutions: scalar wave equation + massless Dirac equation + vacuum Maxwell 
equations. 

It will be noted that Shtelen (1987) and Fushchich et al (1989) described a simple 
prescription for obtaining solutions of linear partial differential equations with non- 
trivial symmetry. It consists of the following. Let there be given a solution U of the 
wave equation (Ou=O). Then the functions 

u , = x u  u2 = xu1 . . . (2.13) 

where X= 2cxxJ-x2cJ+2a  (generator of conformal transformations) and ce are 
arbitrary constants, will be also solutions of this equation. In particular, starting from 
the simplest solution U = 1 we get from (2.13) 

u,=(cx) '-f(a)c2x2..  . .  (2.14) 

For further analysis it is convenient to consider the Dirac equation (2.1) together 

2 1 2 2  
U, = cx u 2 = ( c x )  -ac x 

with its conjugation and write it uniformly as 

iP'J,,V = 0 (2.15) 

where l u = V ( x )  = column(&), $ = yo@*, r' are 8X 8 matrices, 

(2.16) 

y' are Dirac matrices (2.2), 0, is a 4 x  4 zero matrix, 
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Symmetry properties of (2.15) were studied first by Dirac who showed that the 
equation is conformally invariant. Later, Pauli and Touschek found that this equation 
also admits an eight-parameter group, G, ,  of component transformations. And, finally, 
lbragimov (1969) proved that a 23-parameter group, G2) = C (  1,3)@ G,, is the maximal 
in the sense of the Lie invariance group of the equation. Relativistic invariance of 
(2.15) is usually understood as invariance with respect to the spinor representation 

D($,  O)@D(O,f)OD(f, O)OD(O,f) (2.17) 

of the Poincari group P(1,3) (it means that ‘Y is transformed under the Lorentz boost 
as a spinor). However, the invariance of (2.15) under the Pauli-Touschek eight- 
parameter group allows two additional representations of AP(l,3), which are realized 
on the set of solutions of (2.15), namely 

(2.18) D( 1,O)O D(0, 1 ) O  D(0,O)O D(0,O) 

and 

D(4, $)@D($,;) .  (2.19) 

The explicit form of basis elements of AP(1,3) for representations (2.17)-(2.19) is 

where k 5 1, 2, 3 corresponds to (2.17)-(2.19), respectively; 

xw = g,J‘ g,.={I, -1,-1,-lwP” 

and matrices SzJ are 

st,!= -:[r#, r,] SF$=S(I)+Q P” I’“ 

SE’ = sg s ( 3 J  02 - - $ 2 )  02 ~$3)- 03 - $2’- 03 20 03 (2.21) 

$3) 12 - - $2’ 12 9 3 ) -  13 - s ( 2 J - 2 ~  13 13 SEJ= S$:’-2Q2,. 

Here r+ are the same as in (2.16); Qpu are six basis elements of the Pauli-Touschek 
algebra, they are 8 x 8 matrices of the form 

where 

(2.22) 

12, I, are 2 x 2  and 4 x 4  unit matrices. It will be noted that the action of operators 
(2.20) is defined in the space of the eight-component function introduced in (2.15). 
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Invariance of (2.15) under APiz)(l, 3)  results in the possibility of representing this 
equation in the form (2.7), and invariance of (2.15) under AP'"(1,3) allows us to 
rewrite it as (Ljolje 1988) 

where 

(2.23) 

(2.24) 

Now consider the following three sets of symmetry operators of (2.15): 

SA'kl=(P,, JF2,r4, I; QFU) (2.25) 

where P,. JF2 and Q,. are defined in (2.20) and (2.22), r,, are given in (2.16), 
r,=rof'T2T'. These sets of operators form Lie algebras as well as superalgebras. 
Operators Pw, JF,!, re, I are even and Q," are odd in corresponding superalgebras. 
To prove this statement we write down commutation and anticommutation relations 
for these operators. 

Operators P,, and JF,! satisfy standard commutation relations of the Poincark 
algebra AP(1,3) 

[ p * , P " l = o  [Pr ,  J ,v l=g~,Pu-g,vP,  

[J,., J ,=l= guPJsr + g,,Jv, - gJUr - g d , w  
(2.26) 

r4 and I commute with all elements of SA'". Further, it is convenient to introduce 
the notation 

Ra = Qua T. =tE.bcQbc N!k) = J l k J  0'7 M!k) =Ie  2 obc Jlk'  hc , (2.27) 

It is easy to check that 

{R, ,Rb}=R,Rh+RbR,=$3.b 

{Ta,  Th}=-fs.bI { R e ,  Th}=&br4. 
(2.28) 

Operators R., T, from SA"'commute with all even operators of SA"'. For SA"' we have 

[ p , , R , I = [ P , ,  T J = O  

[Nb", R b ] = [ R u ,  Rbl=E,bcTc 

[Nb2', Tal = [ R e ,  Thl= -E.bcRc 

[Ma ,Rbl=[Ta,Rcl=-&,&c 

[ Mb", Tbl= [ T,, Tbl= -E.hcTc.  

(2.29) 
(21 

Superalgebra SA"' is isomorphic to SA"'. The isomorphism is achived by means of 
the transformations 

R 3 + R ; = - R J  T , +  Ti = - T I  T2+ T ; = - T 2 .  (2.30) 

So, the structure of superalgebras (2.25) is fully described. The superalgebras (2.25) 
do not belong to the semi-simple family, but the quotient by their radical is simply 
S0(1,3).  
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3. Dirac equations with non-zero mass possessing dual Poincare invariance 

The Dirac equation for a massive particle (field) 

W I Fushchich et al 

(iy'd, - m)$ = 0 (3.1) 
where y p  are given in (2.2) and m is an arbitrary real constant (mass of the particle), 
is invariant under a 14-parameter group only (Ibragimov 1969), which includes the 
Poincare group, and identical, phase and two charge-type transformations. As always, 
we are factoring out an infinite-dimensional ideal, present for any linear equation, and 
corresponding to the linear superposition principle. It is to be emphasized that we are 
considering group action on the field of real numbers, and therefore identical +'=e*$ 
(a is an arbitrary real constant) and phase transformations $'=e'"$ should be 
distinguished. 

The above-mentioned four-parameter group of component transformations is not 
sufficient to construct a non-spinor representation of AP(l,3), as was done in the case 
of the massless field. The situation can be improved by considering the system of two 
Dirac equations 

(iyJ-m)$- = O  ( iyJ+ m)$+ = O .  (3.2) 

The full information on Lie symmetry of this system gives the following statement. 

Theorem 3. The maximal in the sense of the Lie invariance algebra of system (3.2) is 
a 26-dimensional Lie algebra A,,= AP("(1,3)OA,,, with basis elements having the 
form 

- >  J A  
J c !  = x,PU -x,P,,+S;? 

matrices 1 6 x  16 of the form 
(3.3) 

where 

( A , ~ ~ ) = ( ~ , Q ~ ~ , Q ~ ~ , Q ~ , )  (3.4) 

( .z ,%=(Q,, ,  Q, , ,  Q*,,~J r4 = ror1r2r3 
(matrices 8 x 8  Tr and Q,. are defined in (2.16) and (2.22)), and acting in the space 
of 16-component functions 

@=column(YY_Y+)~column($,, 4-= yo+.", + + , $ + = y o $ $ ) .  (3.5) 

Proof: First of all we write system (3.2) together with its conjugation as 

(if"J+- PI)@ = 0  (3.6) 

where @ = @ ( x )  is defined in (3.5). To prove the theorem is to find the general form 
of infinitesimal operator of invariance 

Q = f ' ( X ) J , +  d x )  (3.7) 
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where t ’ ’ ( x )  are scalar functions and ~ ( x )  is a 16 x 16 matrix. It can be done by means 
of the standard Lie algorithm (see Olver 1986), but the simplest way is to use the 
invariance condition in the form 

[L, Q1= A ( x ) L  (3.8) 

where Lis the operator of (3.6), L= iFJ+  - m, and h ( x )  is some scalar smooth function. 
Starting from (3.8) one gets, after some simple but tedious calculations, the proof of 

n u .L^ .I ,uc IIIcUrcIII .  

Invariance of the system (3.6) with respect to the matrix algebra A,, (3.3) allows 
a vector representation of AP(1,3), which can be realized on the set of solutions of 
this system. This representation is 

3 ( D ( l , O ) O D ( O ,  1 ) ) 0 4 0 ( 0 , 0 ) .  (3.9) 
It is defined by the basis elements 

where P, and $ 2  are given in (3.3), 

A P ( * ’ ( l , ; ) = ( P , , j ~ ~ = j l ‘ l + ~ , , , )  (3.10) 

and matrices 8 x 8  QGn are given in (2.22). Invariance of (3.6) with respect to AP‘*’(l, 3) 
(3.10) means that (3.6) describes not only spinor particles (fermionic fields) but also 
a coupled system of vector and scalar particles (bosonic fields). 

Now consider the ioiiowing two sets of symmetry operators of equation (3.6): 

SA‘”=(P,,~$,f’ . , ,  I ;  d,,,,) i = 1 , 2  (3.12) 

where 

(3.13) 

r4 is given in (3.4). These sets of operator; form Lie algebras as well as superalgebras. 
Operators P,, j : : ,  r4, I are even, and Q,” are odd in corresponding superalgehras. 
Superalgebras (3.12) are isomorphic to those from (2.25). The isomorphism is achieved 
by means of the transformations 

P W  + PI. JZL+ J, ,  ‘(0 r4+rd I + I  Q,, + Q,.. (3.14) 

In conclusion of this section let us consider a noniinear generaiization of (3.6) 
possessing dual PoincarC invariance. 

I A 

Theorem 4. The equation 

[i?”J, - F($@, GM’$)]G = 0 

where ’$ is defined in (3.5): 

(3.15) 

+ = row(&-$?&+$T) M = ( 0 8  ”) (3.16) 

and F is an arbitrary smooth function, is invariant under the two PoincarC algebras 
(3.3) and (3.10). 

18 08 
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Proof. One can make sure that the operator ii"'a, commutes with all generators of the 
considered PoincarC algebras. Further, the quantities $@, $ M @  are absolute invariants 
of these Poincark algebras. Thus, the theorem is proved. 

W I Fushchich ef a/ 

It will be noted that 

9.G =2(4-*-+&+$+) $ M @  = 2(&-$++ &+$-) (3.17) 

U where &, $+ are four-component functions, &+=($* )+yo.  

4. P'" (1,3)-inequivalent ansatze, reduction and solutions of nonlinear Dirac equations 

The nonlinear equation (3.151, as we have shown, is dual PoincarC invariant and 
therefore it unites fermionic and bosonic fields. Such unification opens new ways to 
solve the general problem of unification forces and fields. 

It is important to find exact solutions of (3.15). Of course, we shall be looking for 
classical solutions, but these solutions may be very useful as basic ones in the corre- 
sponding quantum theory. It is to be emphasized that the standard procedure of 
quantization, when the complete set of solutions of a given equation is quantized 
according to bosonic or fermionic rules, may be misleading because our equation may 
have bosonic and fermionic subsets of solutions simultaneously (the simplest example 
is the massless Dirac equation considered in section 2). Therefore, it is more preferable 
to quantize separate families of solutions, having established beforehand what rep- 
resentation of the PoincarC algebra is realized on them. 

To find exact solutions of equations of the type (3.15) we construct P( ')( l ,3)-  
inequivalent ansatze of codimension 1. These ansatze reduce a given equation to ODE%. 

The general form of such an ansatz is 

@ ( ~ ) = A ( x ) + ( o )  (4.1) 

where A ( x )  is 16x 16 matrix, 4 is 16-component function (column) depending on the 
new variable o. Matrix A ( x )  and the new independent variable o are determined from 
the equations (Fushchich and Shtelen 1983) 

Q k A ( X )  E ((;(x)a,+ I l k ( x ) ) A ( x )  = o  
t;(x)a,w(x) = o  k = l , 2 , 3  

(4.2) 

where ( Q , ,  Q2, Q3) is a three-dimensional subalgebra of AP(l,3). The full description 
of subalgebras of AP(1,3) is given in Patera et a/ (1975) and Grundland et a /  (1984). 
Fushchich and Shtelen (1987) (see also Fushchich et al 1989) have used one- 
dimensional subalgebras of AP(l,3) to construct ansatze of codimension 3 for the 
Dirac spinor field. Ansatze of codimension 1 for the Dirac spinor field are fully 
described in Fushchich and Zhdanov (1989). We present the complete set of P("(1,3)- 
inequivalent ansatze of codimension 1 for a 16-component field (3.5) in table 1. Basis 
elements of AP"'(1,3) are given in (3.3) and (3.10). 

In table 1 a and p are arbitrary non-zero constants, 

(4.3) Gk lil- - J O k  ? O + j l i ) -  ,* - (x,+ x,)Pk + &(Po - PJ + + $2 
3;; are given in (3.4) and g$=g$+OFv see (3.10) and (3.11)). 
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Table 1. P")(l, 3)-inequivalent ansitze (4.1) of codimension 1 for field (3.5). 

1693 
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Table 1. (continued) 

No Algebra 4 x 1  w 

X .  x 
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- (f'- (YP')(L?~) + gY,))Q + (i."+ f 3 ) $  + iRQ = 0 
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1 
(Yo 

-P2($g+ s^Y))Q+(i."+f')$+iRQ = 0 

(sb;'+ s:,))(Po+ ?)Q +2f'$ + iRQ = 0 

(sb;'+s!:)(Po+P')Q + 2 @ -  a?')$ +iRQ = 0 

~ e'(@+ a&?)+ + 2& f24) +iRQ = O  

-(eo+ f')( s^&)+ as*(,?)$ + [ w (i."+ f') + (Po- ?')I$ + iRQ = 0 

-- [P'(s^b;'+ $1:) + p(&? + &i)]Q + (f0+e3)$ + iRQ = 0 

1 
a& 

1 
w 

[ w ( w  + p )  - a ] - ' { [ a f 2 - ( w  +p) f ' ] (sg+sy))  

[(-f'+ (0  +p)-'f2)w-'(S;,)+ sy/) 
+ ( f ' - w p ) (  .@ + @)}Q + (i."+ P3)$ + iRQ = 0. 

- e 2 ( w  +p)-'(&?+,@)]Q +(T"+f3)$ +iRQ = 0. 

" (Sb: + &;) Q + (i."+i")$ +iRQ = 0. 1 [ -t fl(gb;'+$y)) -- 
w + l  

-[(i."+?)@+ f '( st) + sy))]Q + [ w(i."+ p) + i."- ?I$ + iRQ = 0. 

-[(Po+ ?')$b;'+ f'(  $)+ $))IQ +[e'- p ( f o +  f')] $ + iRQ = 0. 

[2@(P+ ? ) w - 1 + f & 2 ( i . o - f 3 ) ] ~  + (P"+ fJ)$ +iRQ = 0. 

-[(P0+P3)9g+ ( 9 g +  9y,))fi+ (it:+ 9 g ) f 2 ] ~  
+[(Po+ f 3 ) w  + (P- p3)]$ + iRQ = 0. (4.4) 

Enumerations (1)-(26) in (4.4) correspond to those of the ansatze in table 1;  the 
dot denotes differentiation with respect to the corresponding w and R = F(&, &W). 

Below we obtain some solutions of reduced o p  (4.4) in the case of a non-standard 
representation of AP(1, 3) realized by matrices S:'?=s^~!+& (see (3.4), (3.10) and 
(3.1 1)). The cases with $2 are analogous to those considered in Fushchich and Shtelen 
(1983, 1987), Fushchich el al  (1989) and Fushchich and Zhdanov (1989). 

First of all we note that the condition of compatability for equations (3), (12)-(14), 
(19) and (22) in (4.4) results in R E F ( & ,  LMQ) =0, and therefore such cases are 
rather trivial. 

Consider equation (5) in (4.4), choosing 

R = Ap'lzk P = L Q  (4.5) 

where A, k # 0 are arbitrary real constants. From equation (5) we find as a corollary 
(or condition of compatibility) 

c,, is an arbitrary real constant. A particular solution of (4.6) is 

(4.6) 

(4.7) 
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c is an arbitrary real constant. Let us go back to equation (5 )  in (4.4). Using (4.7) we 
obtain a linear ODE and its general solution has the form 

W I Fushchich et a1 

c - Z A o / (  1 +2k)]‘”’ - [ C  -2Aw/(l +2k)-2k 
2 k + 2  2k 

(4.8) 
[ c - 2Ao/( 1 +2k)12”‘ 1 

+ i  +2.4[c-2,?4(!+?‘-)! 

where x is an arbitrary 16-component constant column satisfying the conditions 

Let us write down the general solution of equation (5) in (4.4) in the case of the spinor 
representation ( i  = 1). It can be found without difficulty and has the form 

4 = exp{or‘[f(fO+ f’) + i ~ ( j x ) ’ ’ ~ ~ ] ) x  (4.10) 

where x is an arbitrary 16-component column. 

above, we find 
Consider equation (15) in (4.4). In this case, by analogy with (5 )  in (4.4) considered 

and then 

Analogously, in the case of equation (16) in (4.4) we have 

(4.11) 
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and 

(4.12) 

where 

p(o) = - ( 1 + 2 k )  In( c -  

j (  Go, + G3, )(P+ f3)(P' - a P ) x  

1 ( 1 + 2 k ) O  

j x = o  

ZkA(l+ u2) 
= i O ~ ( ~ o , + ~ 3 , ) ( f . o + f ~ ) x =  + Z k  

Now consider an example of obtaining an exact solution of the standard Dirac 

(iyJ-m)&=O (4.13) 
using symmetry AP"'(1,3) (3.10) of system (3.2) (or, to be more exact, of the equivalent 
system (3.6)). Let us take a two-dimensional subalgebra &I, Po- P,) of AP'2'(1,3). 
the corresponding ansatz for (3.5) has the form 

equation with non-zero mass 

lir(x)=exp ii:)tan-lXi)+(w) x3 

(4.14) 
w I = x o + x I  "2 = (x:+x:)"2. 

( 
" = {W, 2 "21 

9 2 ) -  " ( 1 '  

Taking into account the identities 

&1=0 23 - s 2 3  + 6 2 3  

we find from (4.14) the ansatz for &: 

Further, it is convenient to introduce the notation 

1 I 
Z(")  =20, v-+20, YzYiQ+ H ( w )  = t ( ~ -  -iy2yIV+). (4.16) 

By means of (4.16) we rewrite (4.15) as 

J I - = ( x ~ - Y ~ Y ~ Z + H .  (4.17) 
After substitution of (4.17) into (4.13) we get the following system of reduced equations 

aH az 
J", J"2 

2y3Z+(y0+ y,) -+ y3w2 -= -imH 

2 J= aH 
(yo+ y1)w2-+ y302-= -imo:Z. 

J", JWZ 

(4.18) 
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We shall look for solutions of this system in the form 

W I Fushchich et a1 

= G 2 A ( 0 2 )  exp[i(yo+ ~ d f ( 4 l  

ff = B ( 4  exp[i(y0+ v l ) f ( w l ) l  
where A and B are some 4 x 4  matrices and f is an arbitrary differentiable function, 
Now one can easy solve (4.18) and write down the solution of (4.13). 

where J ,  and Jo are Bessel functions and ,y is a four-component constant. 
It is noteworthy that ansatz (4.15) has, due to its construction, a vector rather than 

spinor nature and therefore solution (4.19) of the Dirac equation (4.13) cannot be 
obtained within the framework of local symmetry of (4.13). Indeed, ansatz (4.15) (and 
therefore soiution (4.19)) is invariant with respect to operators Po-P3 and J i , + i ,  
(J2,  = x2P, -x3P2 -iy2y3), the latter being a non-Lie one (differentional operator of 
second order). 

In conclusion, let use note that there is a simple connection between P'*'(l, 3)- 
invariant ansatze and P"'(1,3) invariant ones. Since 

*(21 - ~ ' 1 '  + 6 sa"- U" I I Y  

(see (3.4), (3.10) and (3.11)), we can write 

'f""(x) = exp(/(x)Q)W'l'(x) (4.20) 

where f ( x )  is some smooth function, Q is an element of six-dimensional Pauli- 
Touschek algebra (3.1 1). It is natural to consider relation (4.20) as a connection between 
bosonic and fermionic fields. 
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